新材料与工艺手册

[多材料连接] 电池包箱体的轻量化与连接技术

1
回复
274
查看
[复制链接]

微信扫一扫 分享朋友圈

发表于 2019-11-11 09:33:41 | 显示全部楼层 |阅读模式

注册后就可以查看哦!

您需要 登录 才可以下载或查看,没有帐号?立即注册

x

【汽车轻量化在线】随着世界能源危机和环境污染问题日益严重,汽车轻量化越来越受到人们的重视。轻量化对汽车节能减排的效果直接而显著,试验证明,对于传统燃油汽车,汽车质量每减轻10%,可降低油耗6%~8%,排放下降3%~4%;对于新能源纯电动汽车,汽车质量每减少10%,电耗下降5.5%,续航里程增加5.5%。同时汽车质量的降低可减小汽车制动距离,提高安全性能。所以,无论是对传统燃油汽车,还是对新能源汽车,汽车轻量化研究均具有重要意义。

轻量化并非简单地将整备质量减轻,而是在保证强度和安全性能的前提下尽可能地降低整备质量并保证制造成本在合理范围内,以实现安全性和经济性的兼顾统一。电池包箱体作为动力电池的承载和防护机构,在电池包系统中占据重要位置,而且其整备质量目前偏大,具有较大的轻量化空间,同时政策对于电池包能量密度的要求逐步提高,使得电池包箱体轻量化发展具有很强的紧迫性。

针对轻量化过程中引入的新材料和新结构连接需求,本文对电池包箱体轻量化的发展及新型连接技术的应用进行综述,旨在对轻量化设计和制造提供有益借鉴。

电池包箱体的轻量化发展

传统电池包箱体一般采用低碳钢钣金和焊接工艺加工而成,成本较低但箱体质量较大,严重影响电池包系统能量密度的提高和新能源汽车的轻量化,不符合发展趋势,需要进行轻量化改进。目前针对电池包箱体轻量化的主要手段为轻量化材料应用和轻量化结构设计。

图1 动力电池包

1.轻量化材料的应用

电池箱轻量化材料应用主要包括铝合金材料、高强钢材料和复合材料的应用等,目前铝合金替代传统低碳钢在电池箱上得到了大范围的应用,铝合金箱体成为电池箱体发展的一个重要方向。

铝是最常用的金属材料之一,同时也是地壳中分布最广、储存量最多的元素之一,占地壳质量的8.13%。铝合金密度小,约为钢密度的1/3,用铝合金代替钢铁可显著降低箱体质量,且铝合金表面形成的一层致密而稳定的氧化膜,使得其具有良好的耐腐蚀性,故铝合金材料是一种优异的电池箱轻量化材料。目前铝合金电池包箱体主要有铝型材箱体和铸铝箱体两种形式,其中铝型材箱体由于尺寸设计范围大、模具开发成本低、材料性能优越等优点获得了大量的关注。

图2 铝合金电池包箱体

高强钢强度大幅提高,可实现箱体的薄壁化设计,实现轻量化,且高强钢相对于其他材料具有成本优势,通过高强钢替代传统低碳钢用于箱体制造是电池包箱体轻量化发展的一个重要方向;复合材料具有轻质高强等优良性能,在动力电池包轻量化方面发挥着越来越重要的作用。热塑性复合材料具有可重复使用、成本低、成型快等特点,是电池包箱体制造的理想材料。热塑性复合材料的成型,如注塑成型、LFT-D在线模压成型、GMT模压成型等,均可用于电池包的成型。电池箱上盖采用热固性复合材料成型,如SMC、BMC等,已广泛应用于电池包生产。碳纤维复合材料的高成本是限制其在汽车行业应用的主要问题,研发汽车专用高模量低成本碳纤维是目前的研究重点。研发快速固化树脂与预浸料,提高成型节拍是降低碳纤维复合材料成本的主要措施。随着复合材料的成本逐步降低,未来复合材料有望实现在电池包箱体上的大规模应用。

此外,多材料轻量化动力电池包设计开发是未来发展趋势之一。在不同部位应用不同特性的轻量化材料,以得到最优性能的箱体结构设计同时减小质量和成本。针对混合材料电池箱体结构,结构创新设计和异种材料连接技术是关键。

2. 轻量化结构设计

电池箱轻量化不仅涉及轻量化材料的应用,而且与箱体结构的合理设计密切相关,优化箱体结构设计也是实现汽车轻量化的一个重要途径。通过CAD/CAE/CAM一体化技术对电池箱总体结构进行分析和优化,实现箱体零部件的精简、整体化和轻量化,已成为电池箱体开发中主要的设计方法。

利用CAD/CAE/CAM一体化技术准确实现电池箱体实体结构设计和布局设计, 对各构件的开头配置、板材厚度的变化进行分析, 并可从数据库中提取由系统直接生成的有关该箱体的相关数据进行工程分析和刚度、强度计算。对于采用轻质材料的零部件, 还可以进行布局进一步分析, 使轻量化材料能够满足箱体设计的各项要求。

图3 电池箱体CAE分析

电池包箱体轻量化设计方法主要有拓扑优化、形貌优化、形状优化和尺寸优化等。在箱体前期设计过程中即概念设计阶段一般采用拓扑、形貌和自由尺寸的优化手段;在结构设计后期,对具体的技术要求,需要详细设计时更多的采用尺寸优化、形状和自由形状优化技术,以达到具体的设计要求。如某铸铝电池包箱体的拓扑分析,支架安装位置全约束,模拟电池包实际安装情况,同时以国标挤压工况受力分析为边界;设计响应为电池包的应变能和质量;目标为质量最小;约束为体积减少为初始的80%。经过多次迭代获得电池包相对密度云图,如图4所示,红色区域为密度接近1的部分,对设计目标的贡献较大,是必须要保留的或者是要加强的区域。蓝色部分的相对密度较低,对设计目标的贡献小,是我们做轻量化重要的减重途径。当然拓扑优化后的结果,还必须考虑工程工艺的可行性,综合考虑箱体的减重方案设施。

图4 电池箱体拓扑优化

电池包安全性需考虑热管理,其不仅对电池的循环寿命、工作温度起着重要影响,对于电池包整体轻量化能量密度的提高也非常重要。

在电池包现有的热管理轻量化上,冷板结构采用较多的是钎焊工艺和吹胀工艺,如口琴管、冲压板、吹胀板等。针对此类冷板结构,要单独放在电池箱体上,利用CFD仿真技术和参数化优化设计,对冷板流道进行优化设计,保证电池的散热性。同时结合流固耦合仿真对冷板的结构进行轻量化设计,保证冷板结构强度。此外,将热管理系统集成于箱体结构中是目前实现整体结构轻量化研究和探讨的方向,该方法在下箱体内嵌入流道,或利用挤压型材布置流道,利用CFD、参数优化设计以及流固耦合的方法,来对内部流道以及结构进行优化。这种结构不仅可以直接承受模组的重量,同时实现了电池包整体的轻量化,也避免了单独冷板在恶劣工况下的泄露。


电池包箱体连接技术

轻量化的发展对连接技术提出了新的挑战,如何通过轻量化材料的连接技术来保证箱体的安全性能,是电池箱体轻量化过程中的一项重要课题。目前电池包箱体生产中应用到的连接技术主要包括焊接技术和机械连接技术。

焊接是电池箱体加工过程中的主要连接工艺,电池箱生产中应用到的焊接技术包括传统熔焊、搅拌摩擦焊、冷金属过渡技术、激光焊、螺柱焊、凸焊等。电池箱体中目前涉及到的机械连接方式有安装拉铆螺母和钢丝螺套两种紧固标准件方式。

1. 传统熔焊

箱体加工中应用到的熔焊方法有TIG和MIG焊,TIG和MIG焊作为成熟的焊接技术,在箱体上应用具有使用灵活、适用性强、生产成本低等优势,目前在箱体连接上已进行了较多的应用。TIG焊接速度低,焊缝质量好,适用于点固焊和复杂轨迹焊接,在箱体中一般应用于边框拼焊和边梁小件焊接;MIG焊接速度高,熔透能力强,在箱体中一般应用于边框底板总成内部整圈焊接。

目前铝合金TIG/MIG焊接尚存在一些问题需要解决。

(1)焊接缺陷的控制 铝合金由于其化学成分和物理性能的特点,在进行TIG/MIG焊接时产生热裂纹倾向严重,且容易产生气孔。在实际生产和试验过程中,熔焊焊缝是箱体密封及机械失效主要发生的位置,是箱体性能薄弱部位。如何控制TIG/MIG焊接过程中裂纹、气孔等焊接缺陷的产生及检验识别,提高焊接质量,在实际生产中具有重要意义。

(2)焊接变形的控制 TIG/MIG焊接热输入较高且铝合金线胀系数大,导致箱体焊后变形严重,不利于箱体尺寸的控制,影响生产效率和产品合格率。针对焊接变形问题,可采取结合CAE分析优化焊接工艺、采用反变形法等方法进行控制。

(3)焊接效率的提高 目前实际生产中TIG/MIG多采用人工焊接,生产效率低,劳动强度大,焊接一致性难以保证。采用自动化焊接方式是发展趋势,通过机械手臂配合变位机实现电池箱体的全位置焊接,可大幅提高焊接效率和焊接质量,并降低生产成本。

2.搅拌摩擦焊

搅拌摩擦焊(Friction stir welding,FSW)是英国焊接研究所(TWI)于1991年发明的一种新型固相焊接方法。搅拌摩擦焊接过程中,以搅拌针及轴肩与母材摩擦产热为热源,通过搅拌针的旋转搅拌和轴肩的轴向压力实现对软化母材的挤压和锻造,最终得到具有精细锻造组织特征的焊接接头,不同于熔焊接头的铸造组织。

相对于传统焊接,搅拌摩擦焊具有适用范围广、接头质量高、焊接成本低、便于自动化等诸多优点。搅拌摩擦焊在铝挤型材电池箱体中已得到大规模广泛应用。由于焊接装配要求,目前焊接部位主要集中在底板型材对拼焊接和边框与底板总成焊接工序。底板型材对拼焊接为对接接头形式,一般进行正反双面焊接;边框与底板总成焊接一般为锁底接头形式或对接接头形式,锁底接头形式进行单面焊接,对接接头形式进行正反双面焊接。

目前搅拌摩擦焊在电池箱体上应用需要解决的问题有:

(1)焊接应用范围有待扩大搅拌摩擦焊可靠性优于熔焊,而由于焊接机理的限制,其不适用于边框拼焊和边梁小件焊接,而该部位为气密及机械失效薄弱位置。针对此问题,通过设计避免上述焊缝和通过工艺创新实现搅拌摩擦焊在上述位置的焊接应用,以提高产品的质量和可靠性。

(2)焊接生产效率有待提高目前电池箱体生产过程中搅拌摩擦焊焊接速度相对偏低,且对工装依赖性大,工装较复杂,造成生产效率低,成本较高;底板拼焊实行双面焊接,焊接过程中需进行翻面,影响焊接效率。针对生产效率问题,改进的途径有:通过焊接工艺优化并结合搅拌头设计提高焊接速度,实行高速焊接;采用双机头双面对称焊接或双轴肩/多轴肩焊接方法,实现一次焊接双面成形,避免翻面;优化焊接工装设计提高自动化程度来提高生产效率。

(3)焊接接头性能评价有待完善 目前对于接头性能评价方式偏重于静态强度评价,对于动态性能和疲劳性能评价比较欠缺,而这是电池箱体接头设计和焊接工艺制定的重要理论支撑。随着轻量化的发展,底板对拼焊缝支撑宽度减小,无法实现全焊透,需要对接头的性能做出更完善的评价。

3.激光焊

激光焊接(Laser beam welding,LBW)是以高能量密度的激光束作为能源的一种高效精密焊接方法,具有焊接质量高、精度高、速度快的特点,被誉为21世纪最有希望的焊接方法,也是当前发展最快、研究最多的方法之一。

与传统焊接方法相比,激光焊具有如下特点:

(1)高能焊接 聚焦后的功率密度可达105~108W/cm2,加热集中,完成焊接所需热输入小,因而工件焊接变形小,焊缝深宽比大。

图5 FSW过程示意图
1.搅拌针 2.热影响区 3.焊接区 4.热机影响区 5.母材 6.轴肩 7.待焊工件

图6 搅拌摩擦焊在电池箱体上的应用位置

图7 双机头双面对称焊接示意

图8 底板对拼焊接接头

图9 激光焊示意图
1.焊缝 2.蒸气通道 3金属蒸气

(2)焊接速度快 目前铝合金的激光焊接最大速度可达48m/min,钢的激光焊接最大速度可达60m/min,远高于传统熔焊,生产效率大幅度提高。

(3)焊接质量好 对钢焊接焊缝强度等于或大于母材。

(4)应用范围广 可实现不同型号、异种金属之间的焊接,尤其适用于(超)高强度钢板及铝合金的焊接。

激光焊在铝合金焊接中存在的问题是激光反射,反射严重影响了能量利用率和焊接质量。为解决激光反射问题,人们提出激光电弧复合焊接方法。激光复合焊是激光焊和MIG焊两种方法同时作用于焊接区,激光束在焊缝垂直方向输入热量,同时MIG焊在后方熔化焊丝,也向焊缝输入热量。开始焊接时,先MIG焊电源形成电弧对工件加热,使工件表面挥发出大量的金属蒸气,从而使激光束的能量传输更加容易,形成挥发孔,顺利将激光的所有能量传到工件上。激光复合焊焊接过程稳定,焊接速度快,形成的熔池大,搭桥能力好,具有很好的柔性和工件的适应性(如焊铝合金)及经济性,有望在箱体连接方面取得大规模应用。

4. 冷金属过渡技术

冷金属过渡技术(Cold metal transfer,CMT)是在MIG焊短路过渡的基础之上开发出的一种焊接技术。CMT焊接过程中,当熔滴与母材发生接触短路时,焊机的控制器监测到短路信号,将短路电流降到几乎为零,同时通过送丝机回抽焊丝实现熔滴与焊丝的分离,且熔滴在无电流状态下冷过渡,消除了传统MIG/MAG焊中通过焊丝爆断实现过渡而产生的飞溅。

CMT技术在电池箱体加工过程中可取代传统MIG/TIG焊接进行边框拼焊和边框底板焊接部分。相较于传统MIG/TIG焊接,CMT技术热输入明显降低,可有效减小焊接变形,有利于控制产品尺寸;可实现薄板焊接,避免薄板传统MIG/TIG焊接发生焊穿而造成的密封和机械失效,热输入降低有利于控制焊接裂纹的产生,利于箱体的轻量化设计和产品质量保证;减少焊接过程中的飞溅和烟尘,改善工作环境。

图10 激光-MIG复合焊原理
1.激光匙孔 2.等离子云 3.激光系统4.激光束 5.保护气体 6.MIG焊枪7.MIG电弧 8.焊接熔池 9.焊缝

图11 CMT熔滴过渡过程

5. 机械连接

拉铆螺母解决了金属薄板、薄管焊接螺母易焊穿、螺纹易滑牙等问题,实现了薄板与其他部件的螺纹联接,紧固效率高且使用成本低。在电池箱体的生产过程中拉铆螺母主要安装于箱体边框密封面以实现箱体与上盖的机械连接,安装于箱体内腔底板上以实现模组或其他部件与箱体的连接。

钢丝螺套用来加强铝或其他低强度机体的螺孔或修复损坏的螺孔,可加强低强度材料机体螺孔强度,改善螺纹沿旋和长度方向的受力分布和提高螺钉的承载能力。在电池包箱体中,钢丝螺套可用于电池模组安装孔和密封面安装孔。相对于拉铆螺母,钢丝螺套强度较高且易于修复,但一般安装于厚壁处,不适用于薄壁安装。


结语

(1)轻量化是汽车发展的重要方向,采用轻量化材料和轻量化结构设计为实现电池包箱体的轻量化的主要途径。

(2)连接技术是电池箱制造过程中的主要工艺过程,异种材料连接技术是将来实现多材料轻量化箱体设计开发的关键。

(3)新型连接工艺的开发和应用为电池箱轻量化材料和结构的应用提供了技术支撑,满足轻量化条件下实现材料连接,并为新能源汽车安全提供保障。


来源:期刊-《汽车工艺师》;作者:清华大学苏州汽车研究院/司福建 时红海 吴中旺 刘畅 赖兴华




您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关注汽车轻量化最新动态

官方微信

汽车材料网

全国服务热线:

0551-63857995

地址:安徽省合肥市庐阳区四里河鼎鑫中心

邮编:230001 Email:service@qichecailiao.com

Powered by 汽车轻量化在线  皖ICP备10204426号-2

小黑屋-手机版- 汽车轻量化在线 |网站地图